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Using integral relations between the velocity and enthalpy of gas, we develop 
an engineering method for the calculation of the local and average parameters 
of media and the heat and mass flux without using the empirical data about 
contact instruments. 

The mutually related heat and mass transfer between gas and liquid during their direct 
contact are usually treated theoretically by using a standard system of differential equa- 
tions for the transfer of momentum, mass and energy in the boundary layer [I]. Since there is 
no information about how the temperature and concentration change along the surface of the 
contact one uses, alongside other boundary conditions, two tests equations (according to the 
amount of unknown gas parameters) which reflect the experimental data. As a rule, these 
test equations are of individual nature and have a narrow region of application. 

Andreev [2] developed a method for treating theoretically the heat and mass exchange 
during steady concurrent laminar flows (single flow) of gas and a film of liquid with a 
variable temperature in a planar channel without the use of empirical data and the test 
conditions. The essence of the method lies in a transformation of the differential equa- 
tions into integral ones. These equations are solved for the appropriate boundary condi- 
tions on one of the small segments Ax I of the surface of the channel into which the channel 
is decomposed. Within each of these segments, the parameters of the media in the longi- 
tudinal direction (along the flow of the gas in the direction of the x axis) can be assumed 
constant. Consequently, starting frcm the first segment Axl at the entrance of the gas into 
the channel, if the initial parameters of the media are known (which are constant for Axl), 
the solution of the integral equation is used to determine the thickness 6w of the thermal 
boundary layer (with respect to enthalpy) of the gas for Ax i, and mass (vapor) and heat fluxes 
through the contact surface between the phases: 

G=' = D PDw -- O~' bAxi' Qi = ( l tw - 6, + D PDw--PD~ I D)OAxl 

The initial parameters of the media, their flow rates and the mass and heat fluxes 
are then used to determine, on the segment Axi, the final parameters of the media on this 
segment which are the initial values for the next segment (i + i). The calculation is then 
repeated. 

Because the liquid is considerably higher than the thermal conductivity of the gas, the 
temperature change in the liquid film along the transverse direction can be neglected in the 
first approximation. The temperature can therefore be assumed constant and equal to the 
average temperature tf within each segment of the channel. At the same time, the change 
of temperature of the liquid in the longitudinal direction is taken into account by the heat 
balance equation tef = tf ~ Qi/(Gfcf). The plus sign corresponds to a temperature increase 

of the liquid along the motion of the gas, and the minus sign corresponds to a decrease. The 
parameters and the mass and heat fluxes along the channel are represented in the form of 
piecewise constant functions. The accuracy with which this approximation reflects the 
realistic smoothly varying functions improves as the size of the chosen computation step 
(the length of the segment of the channel Ax i) decreases. The total heat and mass fluxes 

are equal to Q=EQi, G~=EO~i 
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Fig. i. Enthalpy profile in the thermal boundary layer 
and in the core of the gas flow. 

Fig. 2. A diagram of the enthalpy profile in the l-d diagram 
of the gas. 

Separately, one should mention two new boundary conditions which are used instead of 
the test conditions. Independently of the method of solution for the system of differential 
equations, these boundary conditions play a fundamental role since they eliminate the 
necessity of using empirical data. 

The essential principles of one of these conditions can be seen by considering the part 
of the channel which contains the liquid film and gas flow (Fig. i), and a change of the 
state along the thickness of the channel in the l-d diagram of the humid gas (Fig. 2). First 
we investigate a linear distribution of the parameters in thermal (enthalpy) boundary layer 
in contact with the liquid. The line A'W' (Fig. i) of constant enthalpy I = constant of the 
thermal core in the l-d diagram (Fig. 2) is represented by an identical straight line AW. 
The straight line of the enthalpy profile F'W' begins in the boundary layer of the saturated 
gas adjacent to the surface of the liquid. Consequently, in the l-d diagram, this corres- 
ponds to a segment of the line FW of the saturated gas close to the straight line (Fig. i). 
The point of intersection W of the two straight lines (Fig. 2) is identical to the point W' 
(Fig. i). Since the point W lies on the saturation line, the gas is saturated also in the 
point W'. Furthermore, away from point W towards point A, the gas is unsaturated, i.e., the 
point W and, accordingly, also point W' belong to the gas saturation boundary. The geo- 
metrical locus of points where the lines of equal enthalpy in the core (Fig. i) intersect the 
lines of variable enthalpy in the boundary layer is the saturation boundary of the gas, i.e., 
the gas in the thermal (enthalpy) boundary layer is saturated, and outside the layer, it is 
unsaturated. The temperature t w of the saturation boundary as a collection of points W on 
each segment Ax i along the entire surface contact is equal to the gas temperature measured 
by a wet thermometer (Fig. 2). 

It is known that the change of state of the gas between two points in the l-d diagram, 
when the parameters in these points are constant, is represented by a straight line [3], i.e., 
the rectilinearity of the line is exact and independent of the form of the profile F'W', 
linear or nonlinear. Thus, in the thermal (enthalpy) boundary layer of the gas, its boundary 
which is the natural saturation boundary assumes the temperature t w of the gas measured by 
a wet thermometer. The thermal (enthalpy) boundary layer is therefore also a layer of saturated 
gas. 

As a result, the conditions at the saturation boundary can be written as 

y=6~, t=G,  d=d~o,  pu=pu~ ,  I=l~=Ia. (1 )  

The other boundary condition is the analytical equation for the intensity of the heat 
and mass exchange 

A~-= A d. (2 )  

A c o n s i d e r a b l e  number  o f  works  h a s  been  d e v o t e d  t o  d e r i v e  and p r o v e  t h i s  e q u a t i o n  [ 2 ] .  We 
shall show that (2) expresses the fact that the average temperature and concentration pressures, 
divided by the maximum possible values, are equal on the heat-exchange segment under conside- 
ration. For an arbitrary scheme of relative motion of the gas and liquid (single flow, 
counterflow, mixed flow), the computational dependences are identical: 
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At = AtlAtmax, Ad ::: Ad/Admax, Atmax 

At =~ t,~, -}- t~w tl "t- tel , Ad 
2 2 

= t~ - -  tbl, Adma x = d w - -  

dw + dew da + dec, 

2 2 

da, 

A detailed experimental test confirms the validity and applicability of boundary 
conditions (i) and (2) for any contact instrument and for the heat and mass exchange pro- 
cesses in it. 

The boundary condition (i) and the fact that the saturation boundary assumes the 
temperature of the gas measured by the wet thermometer give an improved distribution of the 
gas and liquid parameters in the boundary layers which is shown in Fig. 3 for processes of 
different direction. Since the relationship between the parameters of saturated gas is 
one-to-one, the graphs of their change have slopes of the same sign. For example, in an 
adiabatic process, the graphs of t, d, and I in the boundary layer of saturated gas are 
perpendicular to the boundary of the layer (Fig. 3a). Beyond the limits of the saturated 
gas, i.e., in the boundary layer of unsaturated gas, the enthalpy is constant according 
to (i). If one follows, in the I-d diagram, the lines of constant enthalpy WA (Fig. 2), it 
is clear that the moisture content of the gas decreases, and the temprature of the gas 
simultaneously increases (see Fig. 3a, graphs of t and d, in the layer of unsaturated gas). 

During the cooling of the gas (Fig. 3b), the lines t, d, and I have a slope of the same 
sign in the layer of saturated gas and, for a constant enthalpy, the lines of t and d have 
different directions, analogously to the adiabatic process. It is seen that inside the 
boundary layer (a~ the boundary between the layers of saturated and unsaturated gas), there 
is an extremum of d (see also Fig. 2). In the case of heating of the gas (Fig. 3c), an 
extremum of temperature appears inside the layer. These extrema are known and are, as it is 
seen, a result of the mutual effect between the heat and mass exchange [4-6]. 

In contrast with the temperature in the boundary of layer of saturated gas which is 
assumed, in some cases, constant and equal to the temperature of the liquid [3], the present 
improvement of the accuracy of the distribution of t, d, and I in the boundary layer of the 
gas makes it possible to take into account the change of these quantities in the calculation 
of polytropic processes of heat and mass exchange. The counterflow of gas and liquid for 
known initial parameters of the media is calculated analogously [i], i.e., by iterations, 
and it is the final temperature of the liquid which is given. If the initial parameters of 
the gas and the final temperature of the liquid (at the entrance of the gas into the instru- 
ment) are known, the calculation is carried out directly from these values. 

For a turbulent gas flow, the method of calculation has a number of specific features. 
One uses the known empirical data about turbulent boundary layers. In particular, the 
distribution of parameters is taken in the form of a power law with exponent n = 1/7. The 
thickness of the viscous sublayer was determined using the constant S = 6mV,/V = 5 [7]. The 
constant of turbulence <0 = 0.048 for a planar channel with wetted walls was chosen empiri- 
cally with allowance for the analogous constant in the wake flow behind a moving body which 
is equal to 0.047 [7]. 

At the entrance to the channel, there is a segment with a laminar boundary layer of 
gas where all the calculations are carried out by the method of [2]. Together with the linear 
enthalpy distribution in the boundary layer I-If = (Iw-If)y/6 w the calculation can besimpli- 
fied, using the fact that the thickness of the laminar layer is considerably smaller than 
the thickness of the channel, by assuming that the gas velocity in the layer changes linearly 
according to u = uay/6. From the balance equations for the enthalpy and for the mass in the 
final cross section of the computational segment Ax i 

6w 8w 
I~Gg = bpg ~ ludy + Galea, Ga = Gg - -  G b, G b = bpg ~ ud 9 

0 0 

t h e  e n t h a l p y  o f  t h e  g a s  i n  t h e  c o r e  o f  t h e  f l o w  c a n  b e  f o u n d  f r o m  t h e  e x p r e s s i o n  

l~.a = leGg--  (1/3) Gbles 

6g -- .(1/3) GD 
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Profiles of the enthalpy of the gas and of the 
potentials of the heat and mass transfer in the boundary 
layers of the gas and liquid, a) The adiabatic process; 
b) cooling of the gas; c) heating of the gas. 

The boundary layer can be assumed laminar up to Recr = Ua61/v < 575 [7]. Beyond this condi- 
tion, the hydrodynamic boundary layer is assumed to be turbulent. The transition segment is 
omitted in view of its relatively small extent, and because of the absence of reliable 
methods of calculation. The thickness of the layer will be calculated using the formula [7]: 

The t h i c k n e s s  o f  t h e  t h e r m a l  l a y e r  o f  t h e  gas 6 w w i l l  be d e t e r m i n e d  by t h e  method  [2]  w i t h -  
ou t  any c h a n g e s .  

The c h a r a c t e r i s t i c  f e a t u r e  o f  t h e  c a l c u l a t i o n  below is t h a t  t h e  h e a t  and mass f l u x e s  on the 
segment  Ax i a r e  found  by u s i n g  t h e  d i f f e r e n c e  o f  p a r a m e t e r s  on t h e  i n n e r  and o u t e r  b o u n d a r i e s  
o f  t h e  v i s c o u s  s u b l a y e r :  

Qi =: ( ~'z t~'~ -- q- Dz 9~,,,~ -- I~) bAx~. 

The distributions of the parameters in the segment are assumed linear. The temperature on 
the outer boundary of the sublayer is found with allowance for its power-law distribution in 
the layer as a whole: 

The thickness of the viscous sublayer is determined from the formula 

using the above constant S = 6mV,/v = 5 and the following formulae: for the dynamical velo- 
city of gas near the wall or boundary with the liquid v, = ~/~fr/8~ for the friction coeffi- 
cient in a laminar flow %fr = 64/Re, and the Reynolds number Re = ude/v. The total mole- 
cular and turbulent heat conductivities and the diffusion constant will be averaged over 
the thickness of the sublayer, and will be calculated according to the formulae %Z = % + ET, 
D E = ~q) + D T. The velocity gradient within the limits of the viscous sublayer will be 
found by using the method [2] by assuming that the coefficient of dynamical viscosity is 
constant. Then 

3 6m 
U T r  t ~ - -  

- 2 u ~  5 
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Fig. 4. Theoretical parameters of the gas and liquid: i) total 
heat flux transferred from the gas to liquid; 2) temperature of 
the gas measured by a dry thermometer at the axis of the channel; 
3) average temperature of the gas measured by a dry thermometer; 
4) average temperature of the gas measured by a wet thermometer; 
5) average temperature of the liquid; 6) absolute humidity of the 
gas (at temperature 4); 7) absolute humidity of the gas (at 
temperature 2); 8) thickness of the hydrodynamic boundary layer 
of the gas (the points A, B, and C are, respectively, the tho- 
retical point where the laminar layer transforms into a turbu- 
lent one, the point where the opposite layers meet on the axis of 
the channel, and where a layer reaches the opposite wall); 9) 
experimental points. The quantity t is in deg C, 6 in mm, Q in 
kW, d in kg/kg, and L in m. 

The turbulent diffusion constant will be determined frcm the Prandtl hypothesis D T = K16mU m. 
The coefficient KI for a developed turbulent flow is a constant quantity, but it is variable 
for a nondeveloped flow. Indeed, in the transition point between a laminar layer and a 
turbulent one (for Recr % 575), the calculated turbulent fluctuations are absent, i.e., <i = 
0. As the turbulent layer develops, the coefficient changes in proportion to the increase 
of the thickness of the layer: 

2 R  - -  ~r 
To determine the turbulence constant K 0 we use the suggestion [7] that the ratio of coeffi- 
cients of the turbulent exchange for the heat and momentum near the wall is equal to 1.08 
and, as one moves away from the wall, it increases to 1.5. In other words, the intensity 
of turbulent exchange far from the wall (on the outer boundary of the layer) is a factor 
of 1.5/1.08 = 1.39 higher than near the wall. As the thickness of the layer (as the scale 
of vortex motion) increases up to the thickness of the channel, the intensity of turbulent 
exchange (with relative value 1.39) is superimposed on the intensity of the turbulent ex- 
change near the wall (the relative value 1.0), and causes an increase of the turbulent trans- 
port at the gas-liquld boundary by a factor 1.39 + 1.0 = 2.39, respectively, i.e., the co- 
efficient K I becomes equal to 2.39 K 0. 
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A provisional value of K I can be obtained theoretically by applying another Prandtl 
hypothesis (about the path length of mixing in the near-wall region), and by assuming that 
the tangential stress at the outer boundary of the viscous sublayer must be the same if the 
calculation is carried out by either hypothesis: 

p• (dtt/dy) z = p• 

Hence, assuming that u m = 6mdu/dy we find K l = K = = 0.4 a = 0.16. However, the experiment 
shows that in the absence of a rigid wall at the boundary of the gas flow (it is replaced 
by the pliable liquid film) in a developed turbulent flow of gas along the film of the 
liquid <l = 0.115. Accordingly, K 0 = <i/2.39 = 0.048. Thus, the coefficient K I takes the 
following values depending on the quantity 6: 

0 for 0 < 6 ~ 6cr , 

nl = n~ " '2R-- 6or for 6or < 6 ~  2R, 

1 2,39• for 6 > 2R. 

If we know D T and the heat capacity of the saturated gas at the temperature of the liquid 
Cgf = (Cpg + cvd f) /(I + df), we find the turbulent heat conductivity %T = pcgfDT. It should 

be noted that in the determination of the mass flux of vapor near the surface of the liquid~ 
one introduces a correction for the Stefan current ~ = 1 + df for that (conventional) part 
of the flow which is caused by molecular diffusion. For the part of the vapor current caused 
by the turbulent diffusion, this correction is meaningless because there is no sharp distri- 
bution between the counterflow of the first and second components, since there exist a fluc- 
tuation and vortex motion of volume structures which include simultaneously the molecules 
of both vapor and gas. 

After determining the heat flux Qi between the gases and liquids according to [2], we 
found the average enthalpy of the gas 12 in the end of the segment and according to the param- 
eters: t2w, d2w, t2, d2, ~f, tey, ~f, as well as the flow rate of the gas in the layer and core: 

Gb = bpg .I udy = bog (7/8)ua~l/z6w; Ga= 6g--Gb. 
o 

From the balance equation, analogously to the calculation of the laminar layer but 
using n = 1/7 for the profiles of the velocity and enthalpy, we find for the enthalpy in the 
core of the flow for a turbulent boundary layer: 

lea = I2Gg--(i/9) Gje6 
Gg -- (I/9) Ob 

The local gas parameters tew, dew, tea , dea (in the saturation boundary and in the core) 
corresponding to this enthalpy can be determined using the method [2]. 

After the turbulent boundary layers join when 6 = 6 w = R and G b = G , the enthalpy of g 
the gas on the axis of the flow in the channel is determined from the formula 

I~a= I~Gg--O,11Gjef = 1,12I~--0,124I~f. 
Gg--O,11Gb 

The gas velocity on the axis of the flow is u a = (8/7)~. The temperature tea of the gas 
measured by a dry thermometer on the axis of the flow after the layers join can be determined 
in accordance with the adopted power-law distribution: 

tea- tel 
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From the expression for the average temperature of the gas 

I R 
& = tdv 

we then obtain 

~ = (8/7) t~ -- (I/7) ~.  
The remaining parameters are determined by using the method [2]. The parameters of the media 
at the end of the segment Ax i are the initial values for the subsequent computational segment 
Axi+1, and the calculation is repeated. 

Using the developed method, we developed an algorithm and calculated the heat and mass 
exchange in a planar channel for a direct comparison with the experimental data of [i] 
(experiment no. 6). It is seen from Fig. 4, the calculation gives a good agreement with 
the experimental data, and the calculated average temperatures of the liquid and gas (measured 
by a wet thermometer) coincide, for practical:purposes, completely with the experimental 
values. 

NOTATION 

P, Pg, Pv, densities of the humid gas, dry gas, and the vapor; ~, u, Ua, Um, relative 
average velocity, relative instantaneous velocities and the relative velocities in the core 
of the flow and at the boundary of the viscous sublayer; Axi and b, length and width of the 
computational segment; Qi, Gvi, heat and mass fluxes on the computational segment of the 
channel; Q and G v, total heat and mass fluxes; t, d, and I, temperature of the medium, the 
absolute humidity of the gas and its specific enthalpy; tbf , initial temperature of the liquid 
with which it enters the volume of the reactive space on the segment under consideration; v, 
kinematic viscosity of the gas; l, AT, D, DT, molecular and turbulent heat conductivities 
and the diffusion coefficient; I v = r 0 + Cvt f, enthalpy of the vapor; r0, heat of vapor for- 
mation at the melting-solidification temperature; 6, 6f, 6w, 6c,thicknesses of the boundary 
hydrodynamic layer (60 refers to the previous segment), of the liquid film, and of the layers 
of saturated and unsaturated gas; 6 m, 6cr, thicknesses of the viscous sublayer and of the 
hydrodynamic boundary layer when it becomes turbulent, respectively; 61% 6/3, displacement 
thickness (for the laminar layer); ~ ffi 6w/6, a ratio; d e and R, equivalent diameter and half 
the channel thickness for the passage of the gas; Gg and Gf, flow rates of dry gas and liquid 
in the channel; G a and Gb, flow rates of dry gas in the core of the flow and in the layer of 
saturated gas; Cpg, Cv, cf, specific heat capacities of the dry gas, vapor and liquid. The 
indices f, w and a refer to the initial parameters of the medium on the entire segment Ax i 
at the gas-liquid boundary, on the boundary between the saturated and unsaturated gas, and 
in the core of the flow, respectively, e refers to these parameters at the end of the segment, 
and 1 and 2 to the average parameters at the beginning and end of the segment. 
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